Extragalactic Background Light inferred from Galaxy SED-type fractions

Alberto Dominguez

University of Seville/IAA-CSIC Visiting student at UCSC

In collaboration with: J.R. Primack, D. Rosario, F. Prada, M.A. Pérez-Torres, R.C. Gilmore, M. Lozano

AEGIS Collaboration Meeting, Toledo 9-11 Dec 2009

State of the art

Methodology

$$j_{i}(\lambda, z) = j_{i}^{faint} + j_{i}^{mid} + j_{i}^{bright} =$$

$$= \int_{M_{1}}^{M_{2}} \Phi(M_{K}, z) f_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$+ \int_{M_{2}}^{M_{3}} \Phi(M_{K}, z) m_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$+ \int_{M_{3}}^{M_{4}} \Phi(M_{K}, z) b_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$= \int_{M_{1}}^{M_{4}} \Phi(M_{K}, z) b_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$= \int_{M_{2}}^{M_{4}} \Phi(M_{K}, z) b_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$= \int_{M_{3}}^{M_{4}} \Phi(M_{K}, z) b_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

$$= \int_{M_{4}}^{M_{4}} \Phi(M_{K}, z) b_{i}T_{i}(M_{K}, \lambda) dM_{K} +$$

Our sample

Chi2 fit

Lephare code for fitting the SWIRE templates in B, R, I, Ks, IRAC3.6, 4.5, 5.8, 8 and MIPS24

Galaxy SED-type fractions

High-redshift universe, z>1:

One approach, keep constant the fractions of our last redshift bin

Luminosity densities and SFR history

Luminosity densities and SFR history

Local Extragalactic Background Light

Difference with current models

EBL history

Gamma-ray attenuation

Gamma-ray attenuation

Conclusions

1.- Galaxy SED-type fractions from a multi-wavelength catalog of \sim 6000 galaxies between z=0.2-1 from AEGIS, allow a new calculation of the Extragalactic Background Light (EBL).

2.- Local EBL along lower limits from galaxy counts from UV up to mIR, but higher at fIR. In good agreement with limits from gamma-ray astronomy.

3.- Semi-analytic models predict more light at high redshifts than our observational model over all wavelengths.

4.- Universe more transparent for VHE gamma-ray photons than other current models:

- For low-redshift sources ($z\sim0.1$), around 10 TeV, almost one order of magnitude in flux.

- For high-redshift sources ($z\sim1$), around 3 TeV, almost two order of magnitude in flux.

