Observations

The five fields targeted are those in the SEDS Warm Spitzer mission. We argued that these fields give unique stellar masses for z > 2.5.

Four Wide fields:9' x 30'4 x 15 WFC3 tiles60 tiles each120 orbits each480 orbits total- COSMOS, EGS, ECDFS, UDS/UKISS- 2/3 orbit J and 4/3 orbit H

Two Deep Fields:6 x 12'3 x 6 WFC3 tiles18 tiles each270 orbits each480 orbits total- GOODS-N and GOODS-S

- 5 orbits each of Y, J, H

GOODS-S field is embedded within ECDFS and overlaps the ERS2 data, saving orbits and driving the total down to **960 orbits**.

What WFC3-IR can show: greater depth, new structure

Four orbits of ACS i-band vs. 2 orbits of WFC3-IR H-band

Depths

Point source depths (5-sigma):

- Wide: summed J+H goes to 27.4 AB mag
 - This is $\sim L^*$ at z = 8
 - Mass-limited to $10^9 M_{\odot}$ at z = 2
- Deep: each 5-orbit sequence of Y, J, H goes to 27.9 AB
 - This is ~0.5L* at z = 8
 - Sum of all 15 orbits: 28.5 AB mag -->> 0.3L*
 - Approx mass-limited to $10^9 M_{\odot}$ at z = 7-8

Reliable structural parameters:

- Wide: H = 24 AB (3 x 10^{10} M_{\odot} at z = 2)
- Deep: H = 24.5 AB (10^{10} M_{\odot} at z = 2). Catches even faintest galaxies migrating to red sequence

Science goals

Part I, z \sim 2: Straddling the Balmer break: Galactic metamorphosis at $z \sim 2$

- Disk settling and star formation at z \sim 2
- The emergence of massive spheroids at z \sim 2
- The role of AGN at the peak of the QSO era

Part II, High-z: Straddling the Lyman break: "Infant" galaxies to z ~ 8

- Star-formation rates down to $0.3L^*$ at $z \sim 8$
- Stellar masses and star-formation histories to $z \sim 8$
- High-z AGN and early BH growth

Part III, Supernova discovery:

- Two orbits in Wide permit two visits to discover supernovae in quantity beyond $z \sim 1.5$. Nine are predicted in the program.
- An additional 9 lower-z supernovae will be discovered in the repeat Deep visits.
- Additional HST follow-up of 22 orbits per supernova will be required.

Cosmic Variance

Table 1: Summary of Observations (with a comparison to the UDF)

Survey	Area (deg²)	Point-Source Limits (AB, 5σ)		M _{stellar} Limit	L ₁₅₀₀ limit @ z~7	# of	Ptgs. per	Exposure per pointing (orbits)		Total Orbits
		WFC3 Y, J, H	ACS V, I, z	(log M ₀)	(AB)	Fields	field	WFC3 Y, J, H	ACS V, I, z	0.5110
Proposed Wide	0.30	N/A, 27.0, 27.1	28.7, 28.6, N/A	9.04	-19.8 (≲L`)	4	60	0, 2/3, 4/3	2/3, 4/3, 0 †	480
Proposed Deep	0.042	28.1, 28.2, 27.9	29.7, N/A, 28.9	8.72	-19.0	2	18	5, 5, 5	5, 0, 10 °	480
Awarded Ultra-Deep '	0.0039	29.1, 29.5, 29.3	30.2, 30.1, 29.5	8.16	-17.6	3	1	22, 36, 38	56, 150, 150	192

* Effective exposure of ACS is twice the exposure indicated above because of the double coverage of most of our ACS parallel fields owing to its larger FOV.

* Cycle 17 GO:11563. Limits and exposures apply to UDF01 when completed. The other two pointings have shallower WFC3 by 0.4 mag and significantly less ACS coverage.

Senior Personnel

PI: Sandra Faber

Senior Co-I's: Giovanni Fazio: IRAC/SEDS Paul Nandra: Chandra/AGNs David Koo: DEEP/EGS/MOSFIRE Jim Dunlop: High-z/UDS Eric Bell, HW Rix: ECDFS/Hawk-I Anton Koekemoer: HST mosaics Jeff Newman: clustering statistics Jennifer Lotz: mergers Theorists: Avishai Dekel Darren Croton Joel Primack Risa Wechsler Romeel Dave Aaron Dutton Phil Hopkins

40 Co-l's in all